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A nonlinear study of harbour resonance is carried out for a rectangular bay indented 
from a straight coast. Boussinesq equations with nonlinearity and dispersion are used. 
Simplifying approximations are made for a narrow bay to decouple the nonlinear 
problem in the bay from the approximately linear problem in the ocean. Harmonic 
generation in the bay is studied numerically. Experiments for three different bay 
lengths and three amplitudes are compared with the numerical theory. The relative 
importance of entrance loss and boundary-layer dissipation to nonlinearity is 
estimated. 

1. Introduction 
Oscillations in a harbour due to an incident wave have been extensively studied in 

the framework of inviscid linearized long-wave theory (see the review by Miles 1974). 
Based on the same approximation, effective numerical methods have also been 
developed for harbours of arbitrary shape but constant depth by using integral 
equations (Lee 1971 ; Hwang & Tuck 1970) and for arbitrary shape and depth by using 
finite elements (Berkhoff 1972; Chen & Mei 1974). For a sufficiently narrow harbour 
entrance these theories all predict resonant responses within the harbour near the first 
few natural frequencies of the closed basin. For an incident wave of modest amplitude, 
the predicted amplification a t  resonance can often be so high (by a factor of 10, say) 
as to invalidate the assumption of linearity. For constant depth excellent experiments 
have been performed by Lee in very deep water; the results have been used to confirm 
the linearized shallow-water theory by invoking its mathematical analogy with the 
deep-water theory. However, nonlinear effects are demonstrably more important in 
shallow than in deep water; hence the good agreement between the linearized shallow- 
water theory and a deep-water experiment is not necessarily a decisive confirmation 
of the former. Although real-fluid effects (which are difficult to estimate precisely) 
can be called upon to reduce the large amplification predicted by a linear theory, it is 
still useful to know when and whether nonlinearity may play a more important role. 

A study of certain nonlinear effects in a narrow rectangular bay connected to a 
wider channel has recently been made by Bowers (1977). The purpose there was to 
show that the second-order set-down of incident groups of short swells can resonate 
the bay near the long period of the groups. While the study demonstrated decisively 
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the resonance mechanism, the width of the channel was so much less than the incident 
wavelength as to render the problem essentially one-dimensional. Further modification 
to account for two-dimensional radiation is needed to make Bowers’ results directly 
applicable to harbour resonance. 

Nonlinear waves in shallow water have been studied extensively with reference to 
pure progressive waves and standing waves in a closed basin. A common theoretical 
basis for all this work has been the Boussinesq equations, which account for both 
nonlinearity and dispersion to the leading order. For unidirectional propagation, the 
general theory of an initial-value problem in an infinite space based on the Korteweg- 
de Vries equation is now well known. These investigations are largely one-dimensional 
in space. 

In  this paper a nonlinear theory and corresponding experiments for shallow-water 
waves will be presented for the two-dimensional problem of a long rectangular bay of 
small width opened to an infinite ocean. The Boussinesq equations are used as the 
basis. As an important simplification it will first be argued that the wave radiated 
away from the narrow opening is small enough to justify a linear approximation in the 
ocean; thus nonlinearity, which is enhanced by resonance in the bay, is also limited 
to the bay. The matching of the bay and ocean will be effected approximately in 
terms of radiation impedances. By comparing the experiments for fixed frequencies 
and three different bay lengths we shall show that intrinsic nonlinear effects can be 
secondary to entrance loss only for very short bays, but become dominant for suffi- 
ciently long bays. 

2. Formulation 
2.1. The Boussineaq equutions 

We start from the assumptions of inviscid fluid and irrotational flow. It is well known 
in the theory of long water waves that the Boussinesq approximation which includes 
nonlinearity and dispersion to the leading order enjoys a wide range of validity, and 
therefore it will be used as the basis of our study. The following dimensionless variables 
will be used : 

t’ = ot, (d, y’) = (2, y) w/(gh)+, 2’ = Z/h, g, = C/h, u’ = u/(gh)&, (2.1 coe) 

where o is the characteristic frequency, 6 is the free-surface displacement and u(x, y, t )  
is the depth-averaged horizontal velocity. Assuming that the depth h is everywhere 
constant, the Boussinesq equations take the following form : 

where primes have been omitted for brevity. The small parameter, pa  = w%/g < 1, is 
a measure of frequency dispersion. It is assumed that the dimensionless amplitude of 
the wave is also small and measured by the small parameter e = O ( c ) .  The error 
terms in (2.2) are Ole2, ep2, p4) E .  

The coastline is designated by 2 = 0. The bay is rectangular with physical length 
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L, width 2a, and y = 0 as it,s longitudinal axis. In  dimensionless 
boundary conditions on the solid walls are 

- 1  < x <  0 y =  +6 
lYl < 6 

) (bay boundaries), 
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variables, the 

f x = 0  Iyl > 6 (coast line), 

where (1 ,  6) = (L, a)w/ (gh)* .  
At infinity there are incident waves 6, reflected waves from the coast p, and 

radiated waves from the bay opening cR. The precise statement of the radiation 
condition will be postponed until later. 

We recall that the linearized long-wave theory incorporates only the first two 
terms of each equation in (2 .2 )  and is a valid first approximation for a large spatial 
region only if s/p2 < 1. This condition is frequently violated in natural settings as well 
as in the laboratory, where a certain minimum amplitude is required for accurate 
measurement. It should be noted that, if the normalized range of the spatial region is 
not greater than O ( l ) ,  then the usual linearized theory is still a good first approxima- 
tion even for e /p2  = O( 1) .  

We shall study only incident waves and responses which are periodic in time, with 
the fundamental circular frequency w .  Let us represent the solutions as Fourier series 

where (c-%, u-,J are equal to the complex conjugates of (6, urn). It follows from (2 .2 )  
that 

- i n d  + V . u , + g z  V.(Csun-s) = 0, 

-inu, +(1 -gp2n2)VC, + ~ X V ( U , . U ~ - ~ )  = 0, 

8 

5 

which may be combined to give 

( 2 . 5 ~ )  

(2 .5b )  

where 

is the approximate dispersion relation. 
Although the Fourier series is formally infinite, we anticipate that, in cases where 

s /p2  < O(l ) ,  the bay length 1 is not too great, and the incident waves contain only a 
few harmonics, only the first few (three or four) harmonics are appreciable in the 
response. This anticipation underlies most of our subsequent approximations and is 
confirmed in the numerical results. 

k; = n2/( 1 - &,u2n2) = n2( 1 +&9n2) (2 .7 )  

2.2.  The  linearized result 

To facilitate later discussion we recall the linearized result which is analogous to the 
organ pipe problem in acoustics. Assuming that the normally incident wave consists 
of only the first harmonic n = 1,  then for a narrow bay 6 < 1,  the harbour response 
is one-dimensional except within a distance O(6) from the entrance, 

(2 .8)  
‘(x, t )  = Re {Pl cos k,(x + I )  exp ( - it)}, 
u(z, t )  = Re { ( i T l / k l )  sin kl(z + I )  exp ( -it)}, 

6-2 
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where 
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(2.9) I i A l  = dimensionless ,zmplit,ude of incident wave, 

T, = A,[cos k, Z - (iZl/kl) sin 1, I ] - , ,  

2, = kZ, 6[ 1 + (2 i /n)  In (kl 8{2y/ne})] = entrance impedance, 

In y = 0.57721 6 . .  . = Euler's constant. 

This result, which differs only slight,ly from that of Miles & Munk (1961) owing to their 
approximation at the bay entrance, is deducible by matched asymptotics for small 
k,S (Unliiatn 8; Mei 1973). Since Im{Z,} = 0(81nb), the resonant frequencies or bay 
length are approximately at  the zeros of 

(2.10) 

(2.11) 

1 
cos k, Z +- (sin k, I )  Im 2, = 0, 

kl  
or 

A t  the n2th resonant peak the maximum bay response is 

(k14 = (m ++In + [ ( l / k 1 ) 1 r n 2 1 1 ~ ~ ~ = ( ~ + ~ ~ = .  

v a x c  = k,lA,1 [(ReZ,)sink,Z]-1 N O(A, /8) ,  
(2, t )  

(2.12) 

with 13, given by (2.7). Since the maximum displacement is defined to be O(e)  we must 
have A ,  N O(e8) .  

Far from the bay entrance, the total solution in the ocean is given by 

&, y, t )  = lp!l,(exp (ik, x) +exp ( - ik, x)) +iP, k, 6 sin rE, ZHd].)(rE, r ) ,  (2.13) 

with r2 = (xa +y2)* 9 6, x > 0. 

The maximum amplitude of the radiated wave occurs at  resonance and in the near 
field r N O(S) of the bay entrance and, except for the immediate neighbourhood of sharp 
corners, is roughly N e8ln 6 Q 1 upon expanding the Hankel function and using (2.12). 

These order estimates based on the first harmonic suggest an important simplifi- 
cation: if nonlinear terms up to O(e2) are kept in the bay, nonlinearity in the ocean is at 
best O(dlnS)2 and can be ignored. Furthermore, as a practical measure, the same 
simplification can be extended to the higher harmonics if only the first few harmonics 
are numerically important. This measure is related to truncation of Fourier series. 

2.3. Governing equationsfor the ocean and the impedance condition 

In  view of the preceding comments we shall drop the nonlinear terms for all harmonics 
in the ocean x > 0; from (2.5) we have 

-in&, +V . u, = 0, (2.14a) 

n2 - inu, +- Vc, = 0, 
k2, 

which can be combined to give 
(V2+ki)Cn = 0, 2 > 0, 

(2.14 b )  

(2.15) 

with k,  given by (2.7). Note from (2.5) that the zeroth harmonic, i.e. the time average8, 
are: Q = constant and V . u, = 0; both t[o and u, may be taken to be zero by redefining 
the datum. 
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To satisfy the no-flux boundary condition on the coast and the radiation condition 

c,, = AncOs knx +[$, x > 0, (2.16a) 

at  infinity (that radiated waves are outgoing), we represent cn by 

with 
8 

cg = 3 dy'U,(y')Hd1)(kn(x2 +(y-y')2)k 
2n 4 

(2.16 b )  

The first term on the right of (2 .16~)  is the sum of the incident and the reflected nth 
harmonic, while 6: is the radiated nth harmonic. I n  the integrand of (2.16b), U,(y) is 
the nth harmonic amplitude of the normal velocity at  the bay entrance, and is related 
to the surface gradient by 

ax 
(2.17) 

In  the bay not close to the entrance, k,r = O(1). Since k,8 is small €or the first few 
harmonics we may expand the Hankel function to obtain 

(2.18) 
k -  
n 

where flw is the average of U, across the entrance. 

= ~Unk,8H,")(k,r)[1 +O(nS)], knr  = O(l) ,  

Across the entrance, the approximation for small k, 6 is 

6i?(o,y) = 5(6vn n 7r -8 dy'U,(y')ln (* (y-y'l) +O[(knS)21nknS] I . (2.19) 

In  particular, the average across the entrance of c: may be written as 

where 

(2.20a) 

(2.20b) 

which depends, in principle, on the profile of U,. Combining with the incident and the 
reflected waves we have at  the harbour entrance 

(2.21) 

where use is made of (2.17). 2, can be called the impedance of the nth harmonic. 
It may be remarked that Re& N O(k,6) corresponds to the radiation damping 

while ImZ, - O(k,&Ink,S) corresponds to the mass reactance. Only the latter 
depends directly on the detailed variations of U,( y). A quasi-steady approximation 
which is asymptotically correct for small k, 6 within the inviscid theory leads to 

(2.22) 

within the present accuracy (Onliiata & Mei 1973). 
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2.4. Governing equation for the bay 

We first reaffirm a known result in the linearized theory that the wave field in most of 
the bay is one-dimensional except in the O(6) neighbourhood of the entrance. That 
this is still true in a nonlinear theory can be shown by rescaling y by 6, i.e. by intro- 
ducing y = 916. It then follows from the governing equations straightforwardly that 

aulay ,  v = 0(a2). Thus in the far field of the bay (2 .4a ,  b )  become 

( 2 . 2 3 ~ )  

(2.233) 

where primes denote dldx. After some manipulations, one finds that to the accuracy 
of the Boussinesq approximation 

(2 .24)  

which is a set of nonlinear ordinary differential equations. 
The boundary conditions are now 

[A( -1) = 0, i.e. u,( - 1 )  = 0, (2.25) 

at the landward end of the bay. 
Across the bay entrance, [ and a[/ax must be continuous, implying that the con- 

dition (2 .21)  should be satisfied by the bay solution as well. We now take Z, to be 
given by (2 .22) ,  which corresponds to using the quasi-steady approximation for Un(y), 
and impose (2.21 ) directly on the far-field solution of (2 .24)  in the bay, i.e. 

in a[,, 
Cn = An--Zn-, x = 0-, 

#??; ax (2.26) 

which will be referred to as the impedance condition. Thus continuity across the bay 
entrance is satisfied in an averaged sense. 

In  summary, through the impedance condition, the ocean and the bay are de- 
coupled. In  the bay one has a two-point boundary-value problem for a set of non- 
linearly-coupled second-order ordinary differential equations (2 .24)  subject to the 
boundary conditions (2 .25)  and (2 .26) .  After its solution the approximate ocean 
response follows from (2 .13) .  It can be shown that in the linearized limit this procedure 
leads to the same result by a matched asymptotic analysis (Onliiata & Mei 1973), 
and to almost the same results if other guesses are made for the profile of U,(y). 

3. The solution 

The phenomenon of a spatially varying mean sea level due to nonlinearity is known 
in simpler wave states (e.g. for pure progressive and standing waves, see Longuet- 
Higgins & Stewart 1964). In  the bay under study it corresponds to the zeroth har- 

3.1. Remrks  on the mean sea level 
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monic (n = 0) and can be found directly by integrating (2 .23) .  Using (2 .25)  and 
assuming A,  = 0 it can be easily shown that 

cow = t x ciu8(o)i~- iu8(412), (3 .1)  

which gives the mean sea level inside the bay. In  particular, a t  the entrance c , (O)  = 0 ;  
while at the end of the bay, u8(x) = 0, so that go( - I )  is a maximum set-up 

8 

On a frequency response plot the peaks of this mean set-up are expected to coincide 
with the resonant peaks of the first few harmonics. 

As a matter of computation we note that c0 = O(s2), so that the zeroth harmonic 
can be omitted in calculating all other harmonics, and can be obtained after the latter 
axe known. 

We also observe from ( 2 . 2 3 ~ )  that u, is at best O(s2). In  fact, the following 
argument restricts uo still further. Multiplying ( 2 . 2 3 ~ )  by [-, and (2 .233)  by u-, k i l n 2 ,  
summing over n and adding the two resulting equations, we have 

Replacing the index n by - p ,  it  is easily seen that the first series equals its own 
negative, hence is zero. It follows that 

x (en.-,)’ = 0 ( C 3 ) ,  
8 

which upon integrating ( 2 . 2 3 ~ )  implies that u, = O(s3) and is therefore negligible 
in (3 .1) .  

3.2. A second-order approximation 

In  order to provide checks for later numerical work and to assist in physical under- 
standing we have worked out a second-order theory by regular perturbations. The 
starting assumptions are that ~ / p 2  < O(1) and arbitrary I ,  but the results are also 
valid for s/p2 = O ( 1 )  if I 5 0(1), which applies to the practically important case of 
the quarter-wavelength mode. The incident wave consists of the first harmonic only. 
The analysis is straightforward and is omitted here. While the first harmonic is still 
given by Q 2.2,  the mean sea level is 

1 
&(z) = a! I 2’1 1 [COS 2kI(x + I )  - COB 2k1 I ] .  

The second harmonic is 

(3 .3)  

2i 
d o )  +g Z29’(0) 

c 2  = t T ! ( g ( x ) -  2i ~ 0 8  k,(z + I )  +O(pz)] ,  ( 3 . 4 4  
cos k2 I - -  2, sin k2Z 

k2 
with 

g ( x )  = a(. + I )  sin k,(x + I ) .  ( 3 .4b )  

The behaviour of Q is well known, while 5, has resonant peaks at the same values of 
1 as the peaks of cl through Tl. We only present in figure 1 the behaviour of c2( - I )  at 
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n 

FIGURE 1. Second harmonic amplitude at  the back wall. Input data are: h = 20 m, 2a = 100 m, 
L = 1000m, A ,  = 0.03. -, by equation (2.4) ; +, by numerical theory of 84. Differences are 
appreciable only near high peaks. 

the end of the bay which has the dimensions a = 50m, h = 20m, and L = 1000m. 
The incident first harmonic is chosen to be A ,  = 0-03. The peaks can be identified 
with the help of (3.4a). There are two sets of resonant peaks. One set corresponds to 
the maxima of T,, i.e. the resonant peaks of the first harmonic which are near (m +&) T ,  

m = 0,1,2, ...; these peaks are labelled by (1,0), (1, l), (1,2), etc. The second set 
corresponds to the maxima of the second term in (3.4a), i.e. the resonant peaks of the 
second harmonic which are near (m +$)in; these peaks are labelled by (2,0), (2, l) ,  
(2,3) . . . , etc. A better approximation for the position of the peaks is given by a formula 
similar to (2.11): 

which shows that the peaks are shifted to the left of their crude estimates. The shift 
increases with m, n and dispersion p?. Since some neighbouring peaks can be very 
close, the amplification of can be compounded. 

3.3. Numerical method 

We shall apply a numerical method to solve for 5, directly from (2.24), (2.25) and 
(2.26). This method is straightforward and is workable as long as the number of higher 
harmonics is not large. In  computations the second form of (2.7) is used which is 
closer to the exact linear dispersion relation. The infinite set of two-point boundary- 
value problems can be truncated after n = N and solved by iteration. The truncated 
set is quasi-linearized so that a t  the ( p  +l) th  iteration the right-hand side of (2.24) is 
replaced by 

with 

z [Ens @) f;(np_+B1) +s, [p 652p_+s1'], 
8 

l n + s  
2n-s '  R,= &(nZ-sz), f i  = ns 
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The resulting linear two-point problems for cip+1 are then solved by the method of 
complementary functions (see Young & Gregory 1973, vol. 2, p. 579ff.; or Roberts & 
Shipman 1972, pp. 50ff. for more extensive discussions). Thus we introduce the com- 
plementary functions en(x, q )  which are defined by the initial-value problems: 

4 + ki en = C Rns @‘) en+ + 8 , s  SS(” eA-8, - 1  < x < 0,  

eA( - 1, P) = 0, 

8 

which can be solved by stepwise integration. Afterwards we represent the solution for 
cP+l)  by superposition, 

which clearly satisfies the boundary condition (2.25). Now the coefficients ctq must 
be chosen to satisfy the impedance conditions (2.26); thus we get 

which may be solved for a,. In executing the stepwise integration, we use backward 
differences for the first derivatives on the right-hand side of (3.7a) and central 
differences for the second derivative on the left. The use of backward differences on the 
right-hand side increases the truncation error from O ( A X ) ~  to O(Ax) ,  but has the 
advantage of increasing the efficiency of the computational algorithm by uncoupling 
the N equations for en(xj ) ,  n = 1,2,  ..., N ,  a t  each mesh point x j .  Besides, the term 
en(x,) on the left is replaced by #[en(x+l) +en(xj+l)] to improve stability. Uniform 
intervals along - 1  < x < 0 are taken such that the step size satisfies k N A x  = 2?r/10, 
i.e. x is one-tenth of the wavelength of the highest harmonic. 

The above procedure is repeated for further iterations until 

max \[?+I) - @)I < 0.001 

for all n = 1 ,2 ,3 ,  . .., N .  The rate of convergence of successive iterates is found to 
improve significantly by introducing a relaxation parameter A, i.e. by taking the 
solution after the ( p  +l) th  iteration to be 

X 

ACF+l) +(1 - A )  [k? ( A  > O ) ,  

instead of simply c$+1). Usually the most rapid convergence is achieved with h E 0.5. 
After the last iteration, we check whether max (&(x))  < 0.001, otherwise a larger N 
is taken and iteration repeated. 

For all the results to be reported, the fourth harmonic is generally negligible, but N 
is taken to be 5 in the computations as a precautionary measure. Results will be 
discussed later. To check the computer program we have made a comparison with the 
second-order theory for A ,  = 0.03 and excellent agreement is obtained for the first 
three harmonics n = 0 , 1 , 2 ,  except near the resonant peaks, see figure 1. 

X 
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4. Experiments 
4.1. General description 

Experiments have been performed in a wave tank which is 25ft wide, 45ft long and 
1.5 f t  deep. The basin is lined wit,h a smooth plastic sheet on the bottom. The coastline 
spans the full width of the tank while the bay opens along the longitudinal axis of the 
tank. The width of the bay is 4 in. while the length is adjustable by a movable end 
wnll. All walls of the bay and of the coast are vertical sheets of marine plywood which 
are sealed at  the construction joints and a t  the tank bottom. The two sides of the 
tank are inclined a t  a slope of 1 : 5 and covered with a 4in. layer of rubberized horse 
hair. The wave maker is an aluminium flap of length 25 ft parallel to, and a t  a distance 
of 31 f t  from, the coast. A water depth of 6in. was maintained throughout. Wave 
gauges are of parallel-wire resistance type. Signals were displayed on a Sanborn 
recorder and a t  the same time Fourier analysed by a Hewlett-Packard computer 
with a sampling rate of 14 counts/s. Measurements were taken at  2in. intervals 
along the centre-line of the bay, and at  3in. intervals along the longitudinal axis of 
the ocean. 

The experiments were conducted for a fixed wave period of 1.545 s, but for three 
different incident wave amplitudes and three different bay lengths which correspond 
to the first three resonant peaks of the fundamental harmonic. Only one measurement 
is taken for a given set of parameters, so that no information is available regarding 
experimental scatter. 

Before presenting the experiment results in the harbour, we first examine below 
two modelling effects not accounted for thus far. 

4.2. Effective size of the ocean 

An important concern in all harbour experiments is the size of the ocean, which must 
be effectively infinite to avoid spurious resonances. The tank sides perpendiculm to 
the coast are capable of absorbing nearly SOY0 of incident plane waves of 1.545s 
period and therefore cause little reflexion. To evaluate the effect of the highly reflective 
wave maker we consider the linearized problem of a radiating source of strength Q 
at  x = 0, y = 0 on one side of an infinite channel of physical width L, equal to the 
model ocean length. By the method of images one gets the total correction due to the 
presence of the stationary wall at  x = I,, 

m 

Yc(x,y) = Q Z [Hdu(lr-2nlme,l) +Hd1'(lr+2nlmezl)1, (4.1) 
fl= 1 

where l,,, = wL,/(gh)*. The primary source QHdl)(r) in an infinite ocean and the standing 
wave must be added to give the total wave field in the model ocean. In  particular, 
along the axis y = 0, which is the longitudinal axis of the model ocean, 

Q(x, 0) = E( - x) +E(x), (4.2a) 
where 

E(x)  = Q Hdl) (2n1, +x) (0 < x < lm). (4.2b) 

For 1, 1, we follow Morse & Feshbach (1953, pp. 815ff.) by keeping the leading 
asymptotic term of each Hankel function and further approximating the series by 

m 

fl=l 
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1 I I I 1 I I 1 I 

0 2 n  4 n  6 n  8 n  10 n 
X 

FIQURE 2. Experiment (0 )  v8. theory (-) for the wave amplitude in the ocean (h = 0.6ft, 
2a = 0*33ft, L = 1.211ft, o = 4.067s-l, L, = 31+17ft, A, = 0.040). (a) Harbour closed. (b) 
Harbour open. (c)  The radiated wave. 

an integral (provided 1,Jn + integer, so that the series converges) 

E(x)  z - (294 Qexp (ix) C 00 exp(2inlm) (2i)4 -Qexp(ix)Jmdv exp (i21, v) 
7d n=l (Znl, +x)4 = n-4 1 (2lmv+x)4 ’ 

which can be estimated by partial integration to be 

) +O(Z;;lP)* 
(244 i exp ( 2i1,) 

~ ( x )  g - Q exp (ix) ( 
d 21,(21, +x)4 (4.3) 

Thus the correction due to the finite model length gives rise to a wave which attenuates 
at a fast rate of O(l,)-# for any x within ( O , l , )  owing to destructive interference among 
the image sources. 

In our experiments, 1, = 10*49;rr, so that the correction term should be quite 
negligible. A typical comparison between the measured free-surface amplitude along 
y = 0 and the linearized theory for an infinite ocean is shown in figure 2. A ,  is the 
measured standing wave amplitude at  the point (x = 0, y = 0) when the bay entrance 
is closed and is equal to 0.040. In  particular, figure 2 ( b )  shows the results when the bay 
is a t  the first mode of resonance. The agreement between the linearized theory for an 
infinite ocean appears good, especially within a wavelength of the bay entrance. 
Similar comparisons for two smaller amplitudes A ,  = 0.015 and 0.027 show the same 
sort of agreement which therefore lends support to the theoretical simplifications for 
the ocean and the approximate infinity of the laboratory ocean. 

4.3. Real-jhid eflectst 

Unlike tests performed in deep water, the bottom of the bay contributes as much 
viscous damping as the side walls. According to the experiments of Collins (1 963) for 

t Throughout 8 4.3 all variables have physical dimensions. 
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1-411 0.015 0.027 0.040 

I 4  0.0002 0.001 0.003 
#a - 241 6.210 5.646 5.506 
$8 - 3#1 0-671 1-795 5.314 

TABLE 1. Measured harmonics at x = 0, y = 0 when bay is closed. 

1-44 0.001 0-003 0.012 

simple propagating waves, the oscillatory boundary layer remains laminar so long 
as uS,,/v < 160 where u is the inviscid orbital velocity just outside the boundary layer, 
v is the laminar viscosity, and S,, = (2v/w)) is the thickness of the boundary layer. 
For long waves u = A(gh/h)i. Using the model values h = 0-5ft, w = 4.067 s-l, 
v = 10-6ft2/s we find the criterion for laminarity to be A / h  < 0.18, which is satisfied 
in all but one of our test cases. Therefore, laminar flows prevailed along the walls of 
the bay. 

By estimating the power loss from the boundary layers along the bay walls and the 
separation loss a t  the sharp corners of the entrance, the theoretical first harmonic 
response can be corrected in order to compare with the experimental values. The 
specifics are rather standard and are described in the appendix for convenience. 

5. Results and discussions 
We have performed experiments for three bays of lengths L = 1.211, 4.173 and 

7.136 f t  which correspond to the first three resonant peaks of the first harmonic with a 
fixed frequency w = 4.067 s-l. These lengths were determined experimentally. For 
each bey three different amplitudes were tested. The amplitude of the standing waves 
at x = 0, y = 0 when the bay was completely sealed were measured to be A ,  h = 0.0075, 
0.0135 and 0.020ft. Thus the numerical values of the governing dimensionless para- 
meters are 

1 = Lw/(gh)l = 1.227, 4-230 and 7-233, 

S = aw/(gh)i = 0.169, 

p2 = &h/g = 0.257, 

[All = 0.015,0.027 and 0.040. 

Physical limitations of the tank made it necessary to use a wavelength of about 6 ft ,  
thus the dispersion parameter p2 is probably larger than the Boussinesq approximation 
tolerates. From measurements, the standing waves at x = 0, y = 0 also contained 
some high harmonics whose amplitudes and phase differences with respect to the first 
harmonic are listed in table 1. These data were used as input for the numerical theory. 
In  all experiments the zeroth harmonics were removed from Fourier analysis since no 
special care in the experiments was made to ascertain the datum. No visible variation 
across the bay was noticed. 

The first three harmonics from the experiments and the inviscid numerical theory 
are shown in figure 3 for I = 1.227, figure 4 for 1 = 4.230 and in figure 5 for I = 7.233. 
It may be noted that for the smallest A ,  = 0.015 and the shortest bay, the inviscid 
linearized theory is quite satisfactory. For a fixed bay, increasing A ,  has the effect 
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FIGURE 3. (a) Experiment us. inviscid nonlinear theory (f = 0). A, +, x , measured first, 
second and third harmonic amplitudes; -, nonlinear theory; --- -, linear theory for first 
harmonic amplitude; - -- -, first harmonic corrected for entrance loss; - - -- - -, first harmonic 
corrected for entrance and boundary layer losses. L = 1.2tl ft, A, = 0.015. (b) L = 1.211 ft, 
A,  = 0.027 (seefigure3a). (c) L = 1*211ft,A, = 0.40(seefigure3a). 
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F I G U R E ~ . ( ~ ) L  = 4.173ft,A1 = 0.015(seefigure3a).(b)L = 4.173ft,A,=O.O27(seefigure3a). 
(c) L = 4*173ft, A ,  = 0-040 (see figure 3 4 .  
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FIGURE 5. (a) L = 7.136ft,  A ,  = 0.015 (see figure 3 4 .  (b)  L = 7.136ft,  A ,  = 0.027 
(see figure 3 4 .  (c) L = 7-136ft,  A ,  = 0-040 (see figure 3 4 .  
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1.227 r l  r] n = O  0*005,0-013 0.005,0*021 
0.193 

0-005,0*029 

4.230 r l  r] 
7.233 
n = 2  0.032,0.008 0-032,0*014 0.032,0*020 

n = l  0*019,0~009 0.019,0.014 0 ~ 0 1 9 , 0 ~ 0 2 0  

TABLE 2. Values of IT,l/h, c, and c, for nine resonant caws. In each box the numbers represent 

of reducing the amplification of <,/A, and increasing and Q. The reduction of 
linear resonance by spreading energy to higher harmonics is greater for a longer bay; 
this is in accord with the fact that a longer bay allows more space for nonlinear inter- 
action to manifest itself. Compared with experiments, the inviscid predictions are 
excellent for the longest bay, but less good for the shortest, again confirming that 
nonlinearity plays a more dominant role in longer bays. Note that the maximum 
values of 1c1;11 in these figures give the values of 6 directly, the largest measured value 
being 6 = 0.19 (figure 3 c ) .  

The calculated second and third harmonics deviate rather significantly in percentage 
from the measured ralues in figures 3 and 4 where the amplitudes of these harmonics 
are small, but the agreement is not bad in figure 5 ,  where the second harmonic is 
appreciable. Aside from possible experimental inaccuracy, two shortcomings of the 
numerical theory may contribute to this deviation. One is the magnitude of p2, which 
may be large enough to call for a theory accurate up to O(p4). One is our averaging 
approximation of the impedance condition which ignores the details of the flow near 
t,he entrance, The latter simplification affects the accuracy of 2, which in turn affects 
the frequency of the resonant peaks, especially for higher values of n. 

To get a quantitative idea of the three kinds of losses involved in our experiments, 
we list in table 2 the estimated values of the boundary-layer damping rate c,  by 
equation (A 4) and the entrance separation damping rate c,  by (A 5 b )  in the appendix. 
Under the circumstances, 

where (T,/h) is taken to be the measured values also shown in table 2. The radiative 
loss factor which is proportional to PR in equation (A 1) is cQ = ka 0.17 in all cases. 
It clearly shows that entrance loss overshadows the boundary-layer loss for shorter 
bays and large amplitudes, while the reverse is true for longer bays. 

In  figure 3 for the shortest bay (n = 0) nonlinearity and entrance loss are of com- 
parable importance while boundary-layer loss is insignifhant. For the medium-length 
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bay (n = 1) all three factors are comparable (figure 4). For the longest bay (n = 2, 
figure 5 )  nonlinearity is dominant and entrance loss is the least important, while 
boundary-layer loss appears to be correctly accounted for for the smallest amplitude 
(figure 5a),  but is over-estimated for larger amplitudes (figures 5 b ,  c) .  More accurate 
comparison would require a theory which accounts for nonlinearity, dispersion 
and viscosity more fully than is attempted here, and more extensive experiments. 
The present work has perhaps served the purpose of affirming the role of nonlinearity 
in shallow-harbour resonance, 

6. Concluding remarks and possible improvements 
We have used the Boussinesq equations to study resonant oscillations in a rectangu- 

lar bay due to incident waves. Approximations suitable for small bay width lead to a 
nonlinear boundary-value problem for the bay. From calculated and experimental 
results we may conclude that for a short bay, entrance losses can be more important 
than nonlinearity, but for a long bay the reverse is true. This conclusion should hold in 
some prototype bays because the friction coefficient f used here to estimate entrance 
loss remains relevant in order of magnitude. We believe that for a narrow entrance, 
the argument for linearizing the ocean while keeping the bay nonlinear may be ex- 
tended to more general harbours. Indeed, this simplification may be important for 
devising more ambitious numerical techniques for harbours of general shape and 
variable depth, since it permits one to limit the costly nonlinear computations to a 
finite region within the harbour. 

Several improvements of the numerical theory of this paper may be considered for 
the future. First, when nonlinearity e or the bay length is still greater than those 
studied herein, many more higher harmonics can be expected and the method in $ 3 
can then be costly. A more efficient approach is to use the fact that the harmonics 
vary nearly sinusoidally in space with slowly varying amplitude, see (3.4b).  By 
essentially following a method of Bryant (1 973) for progressive waves, we may assume 
the nth harmonic to be 

d ( x )  = c$(x) exp (inx) +c;(x)  exp ( - inx), (6.1) 

where c; and c; are slowly varying in x (scale N e-l). It can be shown that c f  satisfies 

dc,' ip= +--- n3c, + &i C (n  + 9 )  c,f c $ - ~  = 0. - dx 6e 8 

From (2.26) the boundary conditions on cf  are 

c$( - I )  exp ( - inl) - c;( - I )  exp (int) = 0, (6.3a) 

na 
c$(O) +c;(O) = A,+-zZ,(c;(0)-c,(O)). % 

(6.3b) 

[See Rogers (1977) for derivation.] The method of complementary functions in $3.3  
can be adapted here with some modification. The advantage of solving (6.2) and 
(6.3) is that the discretizing interval can be much coarser than that of $ 3 . 3  for the 
same accuracy.t 

t Comments of a referee led to this statement. 
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The second improvement should be in the matching conditions at  the bay entrance 
where the adopted impedance condition becomes progressively poor for higher har- 
monics. A simple and rigorous remedy is riot apparent, however. 

In  tsunami studies if transients are put aside the dominant wavelengths are so 
long that p 2  and S are usually much smaller than in our experimental harbours. For 
example, take 2n = 100 m, h = 20 m and L = 5000 m; the first three linear resonant 
modes are near w L / ( g h ) )  = 1.52, 4.59 and 7.68, corresponding to wave periods of 24.6, 
8.14 and 4.87 min respectively. The corresponding 142 and 6 are extremely small: 
/ i 2  = 3.7 x and S = 0.015, 0.046 and 0.077, respectively. 
In these cases, Airy's non-dispersive theory would be adequate in the harbour. It would 
also be of interest to study the more nonlinear equations of Su & Gardner (1969) 
which are valid for small p 2  but arbitrary E. For some small and shallow harbours, 
nonlinear effects enhanced by linear resonant excitation are conceivable even for the 
relatively short swells but a three-dimensional theory would be necessary and worth- 
while. 
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Appendix. Procedure for estimating real-fluid effect on the first harmonic 

tion 
For the purpose of comparison let us first estimate the average power loss by radia- 

where the linear theory has been used. 
By using standard theory for the power loss inside the boundary layer (see e.g. 

Batchelor 1967, pp. 355ff.), the total tiscous power loss along the entire wall surface 
of the bay is easily found to be 

1 

Thus the ratio of viscous damping to radiation damping, which must be equal to the 
ratio of the corresponding damping factors, cV/cR, is 

At resonant peaks, kL 2 (m = 3) n-. For our dimensions, 

c,/cR = Pv/P, (m +*) (7.88 x lob2), 

which can be nearly 20% for the highest mode (m = 2) tested. (See table 2.) 
For damping effect due to flow separation at the harbour entrance, we follow 

Ingard (1970), Ito (1970), Miles (1974), Unluata & Mei (1975) and Miles & Lee (1975). 
M7e adopt the empirical formula that, across the entrance x = 0, the free surface 
suffers a jump which is quadratic in the local mean velocity. It is also known that the 
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primary consequence of this loss is on the fundamental harmonic which can be 
accounted for by an equivalent linear loss formula, 

m-, t )  - w+, t )  = C e w x  t )  (A 5a)  

with C, = ( 8 / 3 4 f i  v,i / 2 g ,  (A 5 b )  

where U, is the complex amplitude of the first harmonic. The friction factor f may be 
estimated by averaging the steady flow values of sudden expansion ( < 1.0) and 
contraction ( <  0.4). Combining (A 5) and (2.21) we get 

The linearized approximation corrected for entrance loss is given by (2.8) with T, 
replaced by 

4 k  -1 
cos k, L +a (Im 2,) sin k, L] -el sin k, L Re (2,) +% tfl Tl,l]) . 

w w 

(A 7 )  
In  particular, at resonance (2.10) still holds, and one gets 

where TI is the inviscid resonant amplitude according to the linearized theory, i.e. (2.9). 
In  our experiments the corners of the model bay are slightly rounded with an 

approximate radius of curvature of 4 in. Therefore, we have taken a friction coefficient 
f = 0.35 which is half the maximum steady-state value. 

Summarizing, for each resonant case we first incorporate entrance friction into the 
first harmonic by replacing ReZ, with cR +ce in the impedance condition (3.4) and 
then proceed with the numerical solution. The resulting solution, Ti, is then corrected 
for boundary-layer damping also by the following estimate : 
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